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Abstract

In this paper, we investigate some interesting properties of a scalar system controlled by D-modulated feedback. We
show that there are three different cases. In the first case, there is a minimal global attractor which consists of only two
points. The two points form either one 2-periodic orbit or two 1-periodic orbits (fixed points). We also characterize the
attracting region for each of these two points. In the second case, the maximal stabilizable region is bounded, and there
is a minimal local attractor inside this stabilizable region. In the third case, the maximal stabilizable set is a Cantor set,
which is a repeller of the system, and the system is chaotic on the Cantor set.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

We consider a discrete-time scalar system
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xþ ¼ axþ u; ð1Þ
where x+ denotes the system state at the next discrete-time, a is a real number, and the control u is only allowed to take
the value D or �D for a constant D > 0. The control objective is to stabilize the system in the sense of driving the system
state as close as possible to x = 0.

A practical example of this kind of control is the transmitting power control of a mobile unit in the direct sequence
code division multiple access (DS-CDMA) cellular network. A simplest model is
xþ ¼ xþ u; u ¼ �Dsgnx;
where x is the error of the mobile unit’s power level received at the base station with respect to the desired value (both in
decibel, dB). The control action stems from a simple idea: when the level of the received power is higher than the desired
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level, it is decreased by D dB, and when the level of the received power is lower than the desired level, it is increased by
the same amount [1]. There is only one design parameter, D, and the power increment is either D or �D. This scheme is
called a delta modulation or DM transmitting power control. An advantage of such a control is that D can be stored at
the base station or the active mobile unit, and the base station only needs to send 1 or �1 to command the increase or
decrease of the power level. In other words, only one bit of datum is necessary for the implementation of the DM con-
trol. The requirement of one bit for transmitting power control is the standard of IS-95 [11].

In electronic circuits, such a method of analog-to-digital conversion is also called sigma–delta (RD) modulation
which was introduced much earlier in [9,4] and studied in depth for the ‘‘leaky’’ case (when a 5 1) in a number of later
publications [10,8,12]. Delta-modulated control is a special kind of quantized control, a topic of recently renewed inter-
est [5,3,6]. Delta-modulated control is a two-level quantized control, and a quantized control is a cascade of delta-mod-
ulated controls. The study of delta-modulated control will eventually be helpful in the implementation of a quantized
control. On the other hand, the recent interest in quantized control has been focused on the design of quantization levels
for the purpose of stabilization.

In this paper, we present some new results. It will be proved below that for system (1) under delta-modulated
feedback:

• when jaj 6 1,
– there is a minimal global attractor,
– when jaj = 1, the attractor is a bounded interval,
– when jaj < 1, it consists of only two points, and in the later case, we can characterize the attracting region for each

of the two points; this result, reported in [15] with a different proof, is included here for completeness.

• when 1 < jaj 6 2,

– there is a maximal stabilizable region,
– in the above stabilizable region, there is a local attractor, the interval [�D,D], which is independent of a;
• when jaj > 2,
– the maximal stabilizable set is a Cantor set,
– this Cantor set is a repeller of system (1),
– system (1) is chaotic on this Cantor set under delta-modulated control.

The mathematical terms in the above will be made precise throughout the development below. Comparing with the
existing results, the new contributions of this paper consist of the construction of the Cantor-set repeller (when jaj > 2)
as well as a mathematically elegant method of proving the chaotic nature of this repeller.

The rest of the paper will be devoted to the relevant constructions and proofs of the aforementioned properties. We
will use approaches of different complexity to deal with the three cases: a direct method for the case of jaj 6 1, a Lyapu-
nov function approach for the case of 1 < jaj 6 2, and finally, for the case of jaj > 2, a more mathematically sophisti-
cated approach based on fractal geometry. We will proceed in such a way that a possible generalization to higher-
dimensional cases can be carried out in the near future.
2. Delta-modulated control

First, we review some concepts from dynamical systems theory.
Let D be a subset of Rn, and assume that f : D! D is a mapping. The following equation describes a dynamical

system defined by f on D:
xþ ¼ f ðxÞ. ð2Þ
An orbit of (2) starting from x is denoted as {fk(x), k P 0}, where fk represents the kth iteration of f : f0(x) = x,
f1(x) = f(x), f2(x) = f(f(x)), . . . x is called a periodic point of f if there is a positive integer p such that fp(x) = x, and
the smallest such integer p is called the (prime) period of x.

A subset F of D is an attractor of f, if F is closed, invariant with respect to f (i.e., f(F) = F), and attractive (i.e., there
is an open set V containing F such that fk(x)! F for all x 2 V). The set V is called the attracting region of F. If V = D,
then F is called a global attractor of f on D.
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Similarly, a closed invariant set F is called a repeller of f if, starting from any x outside of F, the orbit of (2) moves
away from F.

2.1. Case: jaj 6 1

Theorem 1. When jaj 6 1, there exists a delta-modulated feedback control such that
(1) when jaj = 1, X = [�D,D] is a global attractor on (�1,1);

(2) when jaj < 1, the global attractor is the following set of two points:
f�D=ð1þ jajÞ;D=ð1þ jajÞg; ð3Þ
(3) when 0 6 a < 1, the two points in (3) are 2-periodic points; when �1 < a < 0, the two points in (3) are (1-periodic)

fixed points.
Proof. We define the delta-modulated feedback as
u ¼ �DsgnðaxÞ;
in which sgn(x) is a function satisfying
sgnðxÞ ¼
1; when x P 0;

�1; when x < 0.

(

With such a feedback, the closed-loop system is
xþ ¼ ax� DsgnðaxÞ ¼def
fcðxÞ. ð4Þ
The right-hand side of (4) is well-defined but discontinuous. Systems like this can be studied by the theory of difference
inclusion. Another approach is to apply probability as was done in [2]. We take a deterministic approach to ensure the
uniqueness of an orbit.

In the following, we only give a proof to the case when 0 6 a 6 1. A proof for the case of �1 6 a < 0 can be worked
out in similar lines.

Our proof is divided into five parts.

1. For 0 6 a 6 1, fc(X) � X.
(a) When 0 6 x 6 D,
xþ ¼ ax� D P �D.
Also
xþ ¼ ax� D 6 ax 6 x 6 D.
(b) When �D 6 x 6 0,
xþ ¼ axþ D 6 D.
Also
xþ ¼ axþ D P ax P �aD P �D.
2. For 0 6 a 6 1, X is globally attractive.
(a) If x > D, then
xþ ¼ ax� D 6 x� D.
So f kþ1
c ðxÞ ¼ xþ 6 x ¼ f k

c ðxÞ, since f k
c ðxÞ ¼ x > D is positive, namely, f k

c ðxÞ is decreasing as long as it is positive.
We prove, by contradiction, that ff k

c ðxÞg enters X. Suppose this is not the case. Then there are only two situations:

Case (i): f k

c ðxÞ > D for all k.
Case (ii): There exists a positive integer l such that

x > fcðxÞ > � � � > f l
c ðxÞ > D;
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but
f lþ1
c ðxÞ < �D.

In case (i), since ff k
c ðxÞg is decreasing and bounded from below, we have

f k
c ðxÞ ! x� P D
and, therefore,
x� ¼ ax� � D
or
ð1� aÞx� ¼ �D;
which is impossible, since (1 � a)x* is non-negative when 0 6 a 6 1 and x* P D.
In case (ii), by assumption we have
f lþ1
c ðxÞ ¼ af l

cðxÞ � D < �D;
hence af l
cðxÞ < 0, which is impossible since a P 0 and f l

c ðxÞ > D.
(b) If x 6 �D, then
xþ ¼ axþ D P xþ D.
So f kþ1
c ðxÞP f k

c ðxÞ, if f k
c ðxÞ is negative. Similarly, we can prove that ff k

c ðxÞg enters X.

3. When a = 1, X is an attractor.

From part 1 of the proof, fc(X) � X. We only need to prove that X � fc(X).
To see this, first note that 0 2 fc(X) since fc(D) = 0.
For any 0 5 y 2 X, define
�x ¼ y � Dsgny.
Then, since fc(X) � X, we have �x 2 X. Note that �x and y have opposite signs (e.g., if y > 0, then since 0 < y 6 D, we have
�x ¼ y � D < 0), so
fcð�xÞ ¼ y.
From this last equation, we have f 2
c ðyÞ ¼ y. We conclude that (when a = 1): any point in the half open interval (�D,D]

is a 2-periodic point.
It is also straightforward to verify that when a = �1: (i) all points but ±D/2 in the closed interval [�D,D] are 2-periodic;
(ii) ±D/2 are fixed points.

4. When 0 6 a < 1, the attractor is {�D/(1 + jaj),D/(1 + jaj)}, which is a 2-periodic orbit.
From the above proof, the attractor, if exists, belongs to X = [�D,D]. It is therefore interesting to see how fc evolves
on X. Note that fc transforms X into
fcðXÞ ¼ ½�D;�ð1� aÞD� [ ½ð1� aÞD;D�;
therefore (�(1 � a)D, (1 � a)D) is cut away, and it does not belong to the fc-invariant set in X.
One step further, we can also show that
f 2
c ðXÞ ¼ fcð½�D;�ð1� aÞD� [ ½ð1� aÞD;D�Þ ¼ ½�ð1� aþ a2ÞD;�ð1� aÞD� [ ½ð1� aÞD; ð1� aþ a2ÞD�.
Generally, if we denote
f k
c ðXÞ ¼ ½�ak ;�bk � [ ½bk ; ak �
for ak P bk > 0, then we can easily show that
f kþ1
c ðXÞ ¼ ½abk � D; aak � D� [ ½D� aak ;D� abk �;
that is,
akþ1 ¼ D� abk ;

bkþ1 ¼ D� aak .
ð5Þ
For example, we have
a0 ¼ D; b0 ¼ 0; a1 ¼ D; b1 ¼ ð1� aÞD; a2 ¼ ð1� aþ a2ÞD; b2 ¼ ð1� aÞD.
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From Eqs. (5), we have
akþ2 ¼ ð1� aÞDþ a2ak ; ð6Þ
bkþ2 ¼ ð1� aÞDþ a2bk . ð7Þ
We can prove, by mathematical induction, that

(1) a2i+1 = a2i, for i = 0,1,2, . . .;
(2) {ak} is a decreasing sequence.

To prove (1), we first notice that a1 = a0 = D. Suppose a2i+1 = a2i. Then, from (6),
a2iþ3 � a2iþ2 ¼ a2ða2iþ1 � a2iÞ ¼ 0.
To prove (2), observe that
a2 ¼ D� aDþ a2D ¼ D� aDð1� aÞ 6 D ¼ a1.
Suppose a2i 6 a2i�1. Then, from (6) and part (1),
a2iþ2 � a2iþ1 ¼ a2ða2i � a2i�2Þ ¼ a2ða2i � a2i�1Þ 6 0.
Combining part (1) with this fact, we have proved that {ak} is decreasing.
In completely similar lines, we can prove that b2i�1 = b2i and {bk} is increasing.
Therefore, since ak P bk > 0, there exist a* P b* > 0 such that as k!1,
ak ! a�;

bk ! b�.
From (6) and (7), respectively, we find that a* = b* = D/(1 + a). In other words,
\1
k¼1

f k
c ½�D;D� ¼ f�D=ð1þ aÞ;D=ð1þ aÞg;
which, hence, is the global attractor.It can be easily verified that {�D/(1 + a),D/(1 + a)} is the 2-periodic orbit of the
closed-loop system.

5. When �1 < a < 0, it can be similarly verified that {�D/(1 � a),D/(1 � a)} is a global attractor, and these two points

are (1-periodic) fixed points of the closed-loop system. h

Remark 1. Note that when 0 6 a < 1, we have a situation where there are 2-periodic points but no 1-periodic points for
a mapping on [�D,D]. This is in sharp contrast with the continuous case covered by the Sarkovskii theorem [13].

Since the periodic points are globally attractive, it is interesting to find out the attracting region for each of the
periodic points.

First, we introduce a new concept. For any real number x and a 5 0 (the case a = 0 is trivial), the characteristic
index j is defined as the following non-negative integer:
j ¼ logjaj
D

Dþ ð1� jajÞjxj

� �� �
;

where b*c denotes the floor, i.e., the maximal integer bounded by the real number *.

Lemma 1

(i) For any x, the characteristic index j is the smallest non-negative integer m such that
jf ðmÞc j <
D
jaj .
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(ii.1) For �1 < a < 0, j is the smallest non-negative integer m such that f ðmÞc and f ðmþ1Þ
c have the same sign;

(ii.2) For 0 < a < 1, j is the smallest non-negative integer m such that f ðmÞc and f ðmþ1Þ
c have opposite signs.
Proof. We prove the result only for the case when 0 < a < 1. Proof for another case can be worked out in similar lines,
and it is therefore omitted.

If 0 < a < 1, it follows that
f ðmþ1Þ
c ¼ af ðmÞc � sgnðf ðmÞc ÞD ¼

af ðmÞc � D; f ðmÞc P 0;

af ðmÞc þ D; f ðmÞc < 0.

(
ð8Þ
It is easy to see that jf ðmÞc j < D=a if and only if f ðmÞc and f ðmþ1Þ
c have different signs.

Note that for m 6 j:

• if x > 0, then
fcðxÞ ¼ ax� D;

f ð2Þc ðxÞ ¼ af cðxÞ � D

¼ a2x� aD� D;

..

.

f ðmÞi ðxÞ ¼ amx� am�1D� � � � � aD� D

¼ amx� ð1� amÞ
ð1� aÞ D

¼ amjxj � ð1� amÞ
ð1� aÞ D;
• if x 6 0, then
fcðxÞ ¼ axþ D;

f ð2Þx ðxÞ ¼ af cðxÞ þ D

¼ a2xþ aDþ D;

..

.

f ðmÞc ðxÞ ¼ amxþ am�1Dþ � � � þ aDþ D

¼ amxþ ð1� amÞ
ð1� aÞ D

¼ �amjxj þ ð1� amÞ
ð1� aÞ D.
It is then straightforward to verify that the real number s ¼ loga
D

Dþð1�aÞjxj satisfies
asjxj � ð1� asÞ
ð1� aÞ D ¼ 0.
Therefore, j = bsc is the smallest integer such that f ðmÞc changes sign.
This completes the proof of the lemma. h

The analysis given in the proof can be useful in finding the limiting periodic points. We will carry out this separately
for the two types of systems with �1 < a < 0 and 0 < a < 1, respectively.

If �1 < a < 0, then we have
f ðmþ1Þ
c ðxÞ ¼ fcðf ðmÞc ÞðxÞ ¼ af ðmÞc ðxÞ þ sgnðf ðmÞc ðxÞÞD.
By (ii.1) of Lemma 1, f ðmÞc has the same sign as f ðjÞc , for m P j. Therefore, we have, for m P j,
f ðmþ1Þ
c ðxÞ ¼ af ðmÞc ðxÞ þ sgnðf ðjÞc ðxÞÞD.
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Hence, by denoting the limit of f ðmÞc by x*, we can solve x* from
x� ¼ ax� þ sgnðf ðjÞc ÞD;
to obtain
x� ¼ sgnðf ðjÞc ÞD
1� a

.

If 0 < a < 1, then first let je be the next even integer (or zero) after j (that is, je = j if j is even or zero, and
je = j + 1 if j is odd). Then, from (ii.2) of Lemma 1, f ð2mÞ

c have the same sign as f ðjeÞ
c , for m P je

2
. Therefore, we have,

for 2m P je,
f ð2ðmþ1ÞÞ
c ¼ a2f ðmÞc � asgnðf ðjeÞ

c ÞDþ sgnðf ðjeÞ
c ÞD.
Hence, if denoting the limit of f ð2mÞ
c by x*, then we can solve x* from
x� ¼ a2x� � asgnðf ðjeÞ
c ÞDþ sgnðf ðjeÞ

c ÞD;
to obtain
x� ¼ sgnðf ðjeÞ
c ÞD

1þ a
.

Summarizing the above development, we have the following characterization of the attracting region of a periodic
point.

Theorem 2. For any x, denote its characteristic index as j.

(i) For �1 < a < 0, x belongs to the attracting region of D
1�a � D

1�a

� �
if and only if sgn(x(j)) = 1(sgn(x(j)) = �1).

(ii) For 0 6 a < 1, x belongs to the attracting region of D
1þa

�
� D

1þa

�
if and only if sgn(x(j)) = (�1)j(sgn(x(j)) = (�1)j+1).
2.2. Case: 1 < jaj 6 2

In this section, our approach is based on the Lyapunov function
V ðxÞ ¼ x2.
The orbit of system (1) comes closer to the origin if V(x) decreases along the system’s orbits. The increment of V(x)
along the orbit of system (1) is
V DðxÞ ¼def V ðxþÞ � V ðxÞ ¼ ða2 � 1Þx2 þ 2axuþ u2 ¼ ðu� uð1ÞðxÞÞðu� uð2ÞðxÞÞ; ð9Þ
where
uð1ÞðxÞ ¼ �ax� jxj;
uð2ÞðxÞ ¼ �axþ jxj.
For any x 5 0, the set defined by
UðxÞ ¼ fu 2 Rjuð1Þ < u < uð2Þg
is the control set that makes V(x) decreasing.
Note that when the open-loop system is stable, i.e., when jaj 6 1, u(1)(x) and u(2)(x) do not have the same sign for any

x 5 0. When jaj > 1, u(1)(x) and u(2)(x) have the same sign. Generally, u(1)(x) and u(2)(x) define, on the (x,u) plane, a
radiative cone, and the Lyapunov function can be made negative with control values falling inside the cone. This inter-
pretation is depicted in Fig. 1.

The following intuitive approach can be modified to simplify the development of the previous subsection for the case
of jaj 6 1, therefore from now on we only consider the case of jaj > 1. Define
C ¼ � D
jaj � 1

;
D

jaj � 1

� �
;



Fig. 1. The cone-shaped regions of the control Lyapunov function.
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and
Xc ¼ � D
jaj þ 1

;
D

jaj þ 1

� 	
.

Also can be seen from Fig. 1 is that, on R n C ¼ �1� D
jaj�1


 i
[ D

jaj�1

h
;1
�

, V(x) cannot be made decreasing with a

bounded control: juj 6 D. Consequently, V(x) cannot be decreased by D-modulated control.
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Theorem 3

(i) When jaj > 1, any orbit of (1) with any bounded control u 2 [�D,D] starting from outside C moves away from C.

(ii) When jaj = 2, there exists a D-modulated feedback such that X = C = [�D,D] is the minimal invariant set with

respect to the closed-loop system.

(iii) When 1 < jaj < 2, there exists a D-modulated feedback such that X = [�D,D] is the attractor of the closed-loop sys-

tem, with C as the attracting region. Therefore, C is the stabilizable region and X is the attractor of the closed-loop

system.
Proof

(i) Note that x 2 R n C if and only if
V ðxÞP D2

ðjaj � 1Þ2
.

Also, for x 2 R n C, we either have
uð2ÞðxÞ > uð1ÞðxÞP D
or have
uð1ÞðxÞ < uð2ÞðxÞ 6 �D.
So, for any control input u belonging to U = [�D,D],
V DðxÞ ¼ ðu� uð1ÞðxÞÞðu� uð2ÞðxÞÞP 0;
that is,
V ðxþÞP V ðxÞP D2

ðjaj � 1Þ2
.

Consequently, xþ 2 R n C, namely, x+ moves away from C.
(ii) This case is listed separately due to notational conformity. The proof is actually contained in the following

proof for (iii).
(iii) For any x 2 CnXc, D or �D falls into between u(1)(x) and u(2)(x). It can be easily verified that
u ¼ �DsgnðaxÞ ð10Þ
is a D-modulated feedback to make V(x) decreasing for x 2 CnXc, and to make V(x) increasing for x 2 Xc.
Note that Xc � X and when jaj < 2, X � C.
The proof then splits into two parts:

(iii.1) X is invariant with respect to fc.For any x 2 XnXc,
V ðxþÞ < V ðxÞ 6 max
x2XnXc

V ðxÞ ¼ D2.
For any x 2 Xc, since
V ðxþÞ ¼ a2x2 � 2Djaxj þ D2;
the maximal value of V(x+) on Xc is reached at x = 0 (see Fig. 2), therefore,
V ðxþÞ 6 max
x2Xc

V ðxþÞ ¼ D2.
So, in both cases, x+ 2 X, showing that fc(X) � X.We can also show that X � fc(X), as follows.
For any y 2 X, choose
�x ¼ y � sgnðyÞD
a

.

Then, it verifies that
j�xj 6 jy � sgnðyÞDj ¼ jjyj � Dj 6 D;



Δ

Δ/(1+a)– Δ/(a–1) –Δ/(1+a) Δ/(a–1) x

y/Δ

V(x)

V(x+)

Δ V(x)

–Δ 

Δ

Δ/(1+a)–Δ/(a–1) –Δ/(1+a) Δ/(a–1) x

Δ–Δ

V(x)

V(x+)

Δ V(x)

y/Δ

–

Δ

Fig. 2. The control Lyapunov function: its maximal value and variational difference.
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i.e., �x 2 X, and
fcð�xÞ ¼ y.
Hence, fc(X) = X. So, X is invariant with respect to fc.

(iii.2) The attracting region of X is C.For any x 2 CnX, denoting x0 = x, x1 = fc(x), and xk = fc(xk�1), for k = 1,2, . . .,
there can only be two cases:
(1) there is an integer N such at xN 2 X;
(2) for any k, xk 62 X.
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We next show that the second case will never happen. To see this, V(x) is, by definitions of C and X, decreasing. So,
xk 2 C. Therefore, we conclude that the sequence {V(xk)} is a decreasing sequence satisfying
D2 < V ðxkÞ <
D

1� jaj

� �2

.

So there is a limit, denoted by V*, of {V(xk)} as k!1, satisfying
D2
6 V � <

D
1� jaj

� �2

. ð11Þ
Note that
V ðxkþ1Þ ¼ a2V ðxkÞ � 2Djaj
ffiffiffiffiffiffiffiffiffiffiffiffi
V ðxkÞ

p
þ D2.
Taking the limit as k!1, V* can be solved from
V � ¼ a2V � � 2Djaj
ffiffiffiffiffiffiffiffiffiffi
ðV �Þ

p
þ D2;
as
V � ¼ D
jaj � 1

� �2

.

This is a contradiction to (11).
This proves that {xk} eventually enters X for any x 2 CnX, and thus C is contained in the attracting region of X. h

Combining this with the conclusion in (i), the attracting region of X is C.

2.3. Case: jaj > 2

From Theorem 3, with the D-modulated feedback (10), any point in
R n C ¼ x jxjP D
jaj � 1


� �
cannot be driven to the inside of interval C.
Here, we investigate what happens inside the closed interval C ¼ � D

jaj�1
; D
jaj�1

h i
.

First of all, there are two kinds of orbits that stay inside C and leave C, respectively. This can be seen from the fol-
lowing example.

Example 1. Consider the system
xþ ¼ 3x� Dsgnx.
In this case,
C ¼ ½�D=2;D=2�.
The orbit starting from 5
12

D is
5

12
D;

1

4
D;� 1

4
D;

1

4
D;� 1

4
D; . . . ;

� �
;

which stays inside [�D/2,D/2].
The orbit starting from 3

7 D is
3

7
D;� 1

7
D;

4

7
D; . . . ;

� �
;
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which leaves C (and stays outside C), since
4

7
D 62 ½�D=2;D=2�.
Of course, when an orbit leaves C, it leaves there forever. The Lyapunov analysis given in the last subsection can be
used to explain why some orbits leave C. Remember that along an orbit starting from Xc, the Lyapunov function
increases from V(x) to the next value V(x+). We have calculated that the maximal value of V(x+) on Xc is D2. This max-
imal value is strictly greater than D2

ðjaj�1Þ2 when jaj > 2, which is the minimal value of the Lyapunov function outside C.

That is, there are points in Xc such that the immediate next iteration already leaves X. In the meantime, we also know
that along the orbits starting from CnXc, the Lyapunov function V(x) decreases. Therefore, there are points in CnXc,
such that after two iterations, the orbits leave C, and these points are called unstable points.

The above description can be precisely constructed. Denote the set of unstable points in C as U.

Construction of a cantor set

Iteration 1:
U1 ¼ � jaj � 2

jajðjaj � 1ÞD;
jaj � 2

jajðjaj � 1ÞD
� �

� U.
This is because, jxþj > D
jaj�1

, for any x 2 U1.
Iteration 2:
U2;1 [U2;2 ¼ � a2 � 2

a2ðjaj � 1ÞD;�
a2 � 2jaj þ 2

a2ðjaj � 1Þ D

� �
[ a2 � 2jaj þ 2

a2ðjaj � 1Þ D;
a2 � 2

a2ðjaj � 1ÞD
� �

� U.
This is because, xþ 2 U1, for any x 2 U2;1 \U2;2.
Iteration 3:
[4
k¼1

U3;k ¼ � jaj � 1

a2
D� jaj � 2

jaj3ðjaj � 1Þ
D;� jaj � 1

a2
Dþ jaj � 2

jaj3ðjaj � 1Þ
D

 !
� U.
. . .
It is noted that the total length of the intervals in the kth iteration is
2kðjaj � 2Þ
jajkðjaj � 1Þ

.

Therefore, the measure of U � C is
jaj � 2

jaj � 1

X1
k¼1

2

jaj

� �k

¼ jaj � 2

jaj � 1
� 2

jaj
X1
k¼0

2

jaj

� �k

¼ 2

jaj � 1
;

which is the measure of C.
Let C ¼ C nU. Then C is an invariant set of the closed-loop system and it is a Cantor set. To formally prove these

and to investigate the behavior of the closed-loop system on C, we make use of some results from fractal geometry [7].
The classic Cantor set is given by taking the interval [0,1], removing the middle third, removing the middle third of

each of the two remaining pieces, and continuing this procedure until infinitum. The Cantor set C that we are construct-
ing is given by taking the interval [0,1], splitting it into three intervals, keeping the two with length 1/a (a > 2), and
removing the middle one with length 1 � 2/a, and continuing forever.

The total length of the line segments in [0,1] after the kth iteration is (2/a)k, and the number of line segments is
N = 2k, so the length of each element is � = 1/ak. Therefore, the box dimension (as well as the Hausdorff dimension)
of C is
d ¼ lim
k¼1

ln N
ln �
¼ ln 2

ln a
.

To proceed, we need Theorem 9.1 of [7], which is rephrased as follows.
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Theorem 4 [7].

(1) Let S1, . . .,Sm be contracting mappings on D � Rn. Then there exists a unique non-empty compact subset F of D such

that
F ¼
[m
i¼1

SiðF Þ.
(2) For any non-empty compact subset E of D, define
SðEÞ ¼
[m
i¼1

SiðEÞ;
and denote by Sk the kth iteration of S. For any non-empty compact set E satisfying Si(E) � E, and for each i, it holds

that
F ¼
\1
k¼1

SkðEÞ.
We adopt the following definition of chaos.

Definition 1 [7]. Let F be an attractor or repeller of the dynamical system (2). The motion of (2) is called chaotic on F if

(i) there is an x 2 F, such that the orbit {fk(x)} is dense in F;
(ii) the set of periodic points of f in F is dense in F;

(iii) f is sensitive to initial conditions, that is, for any x,y 2 F, x 5 y, there exist a number d > 0 and an integer k such
that
jf kðxÞ � f kðyÞjP d.
We now show that when jaj > 2, the Cantor set C constructed above is a repeller for the closed-loop system fc, and
the motion of fc on C is chaotic.

Theorem 5. If jaj > 2, then

(1) there is a Cantor set C with box dimension of ln2/ln jaj in C such that C is a repeller for the closed-loop dynamical

system fc(x) = ax � D sgn(ax);

(2) fc is chaotic on C.

Proof. The proof is similar to the development in Section 13.1 of [7] for the tent map. For simplicity, we only prove the
case when a > 2, and will carry out the proof in two steps.

(1) In order to use Theorem 4, we perform a state transformation,
y ¼ ða� 1Þxþ D
2D

.

The closed-loop system writes in the new state as
yþ ¼ ay � a� 1

2
ð1þ sgnð2y � 1ÞÞ ¼def �f cðyÞ; ð12Þ
and C is transformed into [0,1] in the new coordinates.
Define
S1ðyÞ ¼
1

a
y;

S2ðyÞ ¼
1

a
y þ a� 1

a
.



X. Xia, G. Chen / Chaos, Solitons and Fractals 33 (2007) 1314–1328 1327
We see that for y 2 [0,1],
�f cðS1ðyÞÞ ¼ �f cðS2ðyÞÞ ¼ y. ð13Þ
Note that both S1 and S2 are contracting mappings on [0,1]. By Theorem 4, there is a unique compact set C such that
C ¼ S1ðCÞ [ S2ðCÞ; ð14Þ
and C ¼ \1k¼1Skð½0; 1�Þ, in which S([0, 1]) = S1([0, 1]) [ S2([0,1]). It is easily seen that C is a Cantor set, and it is the ori-
ginal Cantor set that we constructed earlier in the subsection, which is now transformed into the new coordinates. The
box dimension of this set C is ln2/lna.
From (13) and (14), �f cðCÞ ¼ C. So C is invariant with respect to �f c.
To show that C is a repeller of �f c, note that if y < 0, then
yþ ¼ �f cðyÞ ¼ ay;
so when k!1, �f k
cðyÞ ! �1. If y > 1, then
yþ ¼ �f cðyÞ ¼ ay � aþ 1;
so when k!1, �f k
cðyÞ ! 1. If y 2 ½0; 1� n C, then there exists an integer k such that y 62 [fSi1 � � � � � Sik ½0; 1� : ij ¼ 1; 2g,

so �f k
cðyÞ 62 ½0; 1�. Therefore, either �f k

cðyÞ ! �1 or �f k
cðyÞ ! 1 when k!1. That is, C is a repeller of �f c.

(2) Since
C ¼
\1
k¼1

Skð½0; 1�Þ ¼
\1
k¼1

[
ðik¼1;2Þ

fSi1 � � � � � Sik ½0; 1�g;
we can use yi1 ;i2 ;..., ij = 1,2, to represent those points in C that were obtained after iterations i1, i2, . . . If i1 ¼ i01; . . . ; ik ¼ i0k ,
then
jyi1 ;i2 ;... � yi0
1
;i0

2
;...j 6 1=ak . ð15Þ
Note that �f cðyi1 ;i2 ;...Þ ¼ yi2 ;i3 ;..., since yi1 ;i2 ;... ¼ Si1ðyi2 ;i3 ;...Þ. For any point yi0
1
;i0

2
;... 2 C and any integer q, we can find k such

that ði01; i02; . . . ; i0qÞ ¼ ðikþ1; . . . ; ikþqÞ. So �f k
cðyi1 ;i2 ;...Þ ¼ yikþ1 ;ikþ2 ;...

By (15),
j�f k
cðyi1 ;i2 ;...Þ � yi0

1
;i0

2
;...j 6 1=ak .
Hence, �f c has a dense orbit in C.On the other hand, yi1 ;...;ik ;i1 ;...;ik ;i1 ;... is a periodic point with period k, so the set of periodic

points of �f c is dense in C.Because �f k
cðyi1 ;...;ik ;1;...Þ 2 ½0; 1=a� but �f k

cðyi1 ;...;ik ;2;...Þ 2 ½1� 1=a; 1�, it shows that �f c is sensitive to

initial conditions.This concludes that the motion of �f c is chaotic on C. h
3. Conclusions

In this paper, we have investigated some interesting and quite complex properties of a rather simple system con-
trolled by D-modulated feedback. We have shown that there are three different cases. In the first case, there is a minimal
global attractor consisting of only two points. The two points form either one 2-periodic orbit or two 1-periodic orbits
(fixed points). We have also characterized the attracting region for each of these two points. In the second case, the
stabilizable region of the system is bounded, and there is a local attractor inside this stabilizable region. In the third
case, the maximal stabilizable set of the system is a Cantor set, and this Cantor set is a repeller of the system. Moreover,
the system is chaotic on the Cantor set.

We remark that the currently available theory of continuous dynamic systems does not apply to our case where the
D-modulated feedback introduces discontinuity. For example, we have found an example with 2-periodic points but
without 1-periodic points. This is a major departure from what the famous Sarkovskii theorem claims for continuous
dynamic systems. Due to the discontinuity, the periodic points of the D-modulated feedback system in the case of
1 < jaj 6 2, and the behavior of the closed-loop system in the attractor [�D,D], could be more complicated than the
continuous case [14].
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In the development of these results, we have applied various analytical methods of different mathematical sophisti-
cation. The intention of doing so is to shed some lights for possible generalization of the results to higher-dimensional
systems. Indeed, many results can be generalized by using the Lyapunov approach, which will be reported elsewhere.
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